Math 279 Lecture 28 Notes

Daniel Raban

December 7, 2021

1 Hopf Algebras for Constructing Regularity Structures

1.1 Building up to Hopf algebras

Here is the algebraic part of the story: We learn how to build an important group of transformations $\left\{\Gamma_{g}: g \in G_{0}\right\}=G$ for a Hopf algebra. It is this group that yields our group G in our regularity structure. Here are the first few steps:

Definition 1.1.

1. Algebra: Given a field k and a k-vector space A, by a product, we mean a linear map $m: A \otimes A \rightarrow A$ that is associative. We also have a unit $\mathbf{1} \in A$, which we also write as $\mathbf{1}: k \rightarrow A$ by $\mathbf{1}(\lambda)=\lambda \mathbf{1}$.
2. Coalgebra: With A as above, we now have a coproduct, a linear $\Delta: A \rightarrow A \otimes A$ (we can think of this as $\Delta a=\sum_{i} a^{i} \otimes \widehat{a}^{i}$ with $a^{u}, \widehat{a}^{i} \in A$). This is coassociative, which means

$$
(\mathrm{id} \otimes \Delta) \circ \Delta=(\Delta \otimes \mathrm{id}) \circ \Delta: A \rightarrow A \otimes A \otimes A .
$$

We also have a counit $\mathbf{1}^{\prime}: A \rightarrow k$ such that

$$
\Delta a=\sum_{i} a^{i} \otimes \widehat{a}^{i} \Longrightarrow \sum_{i} \mathbf{1}^{\prime}\left(a^{i}\right) \widehat{a}^{i}=\sum_{i} \mathbf{1}^{\prime}\left(\widehat{a}^{i}\right) a^{i}=a .
$$

(In fact, Δ being a coproduct is equivalent to $\Delta^{*}: A^{*} \otimes A^{*} \rightarrow A^{*}$ is a product.)
3. Bialgebra: This is $\left(A ; m, \mathbf{1} ; \Delta, \mathbf{1}^{\prime}\right)$ with $(A ; m, \mathbf{1})$ an algebra, $\left(A, \Delta, \mathbf{1}^{\prime}\right)$ a coalgebra, and compatibility between these two structures: First, define a product $m_{2}: A \otimes A \otimes$ $A \otimes A \rightarrow A \otimes A$ by extending the following bilinear map:

$$
m_{2}\left(a \otimes b, a^{\prime} \otimes b^{\prime}\right)=m\left(a, a^{\prime}\right) \otimes m\left(b, b^{\prime}\right)
$$

The compatibility is that $\Delta:(A, m) \rightarrow\left(A \otimes A, m_{2}\right)$ is a morphism with respect to the algebra structures:

$$
\Delta(m(a, b))=m_{2}(\Delta(a), \Delta(b))
$$

We may also write this as $\Delta(a \cdot b)=(\Delta a) \cdot 2(\Delta b)$.
4. Convolution product: If $(A ; m, \mathbf{1})$ is an algebra, $\left(C ; \Delta, \mathbf{1}^{\prime}\right)$ is a coalgebra, let $\mathcal{L}_{k}(C, A)$ be the set of linear maps $C \rightarrow A$ (for example $\mathcal{L}(C, k)=C^{*}$). Then we can turn $\mathcal{L}_{k}(C, A)$ into an algebra by

$$
(f \star g)(c)=(m \circ(f \otimes g) \circ \Delta)(c) .
$$

Indeed,

$$
\Delta c=\sum_{i} c^{i} \otimes \widehat{c}^{i} \Longrightarrow(f \star g)(c)=\sum_{i} f\left(c^{i}\right) \cdot m g\left(\widehat{c}^{i}\right),
$$

where $a \cdot{ }_{m} b=m(a, b)$. Here is our unit element: $\mathbf{1}_{A} \circ \mathbf{1}_{C}^{\prime}: C \rightarrow A$. This is nothing other than $\left(\mathbf{1}_{A} \circ \mathbf{1}_{C}^{\prime}\right)(c)=\mathbf{1}_{C}(c) \mathbf{1}_{A}$.

Remark 1.1. If $A=k$, then $\mathcal{L}(C, k)=C^{*}$, and $f \star g=f \star \Delta g=\Delta^{*}(f, g)$. In particular,

$$
\Delta c=\sum_{i} c^{i} \otimes \widehat{c}^{i} \Longrightarrow(f \star g)(c)=\sum_{i} f\left(c^{i}\right) g\left(\hat{c}^{i}\right) .
$$

Example 1.1. Let $(G, \cdot, 1)$ be a group, and let k be a field. Then $A=k G=\operatorname{span}_{k}\{g$: $g \in G\}$ have multiplication $m\left(g_{1}, g_{2}\right)=g_{1} \cdot g_{2}$, unit $\mathbf{1}=1$, coproduct $\Delta(g)=g \otimes g$, and counit $\mathbf{1}^{\prime}\left(\sum_{i} \lambda_{i} g_{i}\right)=\sum_{i} \lambda_{i}$. Then $\left(k G ; m, 1 ; \Delta, \mathbf{1}^{\prime}\right)$ is a bialgebra.

Definition 1.2.

5. Hopf algebra: By a Hopf algebra, we mean a bialgebra ($H ; m, \mathbf{1} ; \Delta, \mathbf{1}^{\prime}$) for which we can find a linear $S: H \rightarrow H$ such that if \star is the convolution product for $\mathcal{L}_{k}(H, H)$, then

$$
\left(S \star \operatorname{id}_{H}\right)(h)=\left(\operatorname{id}_{H} \star S\right)(h)=\mathbf{1}^{\prime}(h) 1,
$$

where $\operatorname{id}_{H}, S: H \rightarrow H$. Equivalently,

$$
\Delta h=\sum_{i} h^{i} \otimes \widehat{h}^{i} \Longrightarrow \sum_{i} h^{i} \cdot{ }_{m} S\left(\widehat{h}^{i}\right)=\sum_{i} S\left(h^{i}\right) \cdot m \widehat{h}^{i}=\mathbf{1}^{\prime}(h) \mathbf{1}
$$

Example 1.2. Continuing our previous example, our $k G$ is a Hopf algebra with $S(g)=g^{-1}$ for $g \in G$.

1.2 Constructing a group of transformations from a Hopf algebra

Here is the next step:
6. Let $\left(H ; m, \mathbf{1} ; \Delta, \mathbf{1}^{\prime} ; S\right)$ be a Hopf algebra, and assume that we have a pairing of H^{*} and H (not necessarily the dual space pairing). Then $\left(H^{*} ; \Delta *,\left(\mathbf{1}^{\prime}\right)^{*} ; m^{*}, \mathbf{1}^{*} ; S^{*}\right)$ is again a Hopf algebra. Given $g \in H^{*}$, set $\Lambda_{g}: H^{*} \rightarrow H^{*}$ by $\Lambda_{g}(f)=f \cdot \Delta^{*} g$. We write $\Gamma_{g}: H \rightarrow H$ for $\Lambda_{g}^{*}:$

$$
\left\langle\Delta^{*}(f, g), h\right\rangle=\langle f \otimes g, \Delta h\rangle=\left\langle\Lambda_{g}(f), h\right\rangle=\left\langle f, \Gamma_{g}(h)\right\rangle=f\left(\Gamma_{g}(h)\right) .
$$

Then

$$
\Delta h=\sum_{i} h^{i} \otimes \widehat{h}^{i} \Longrightarrow \sum_{i} f\left(h^{i}\right) g\left(\widehat{h}^{i}\right)=f\left(\sum_{i} g\left(\widehat{h}^{i}\right) h^{i}\right)
$$

so

$$
\begin{aligned}
\Delta h=\sum_{i} h^{i} \otimes \widehat{h}^{i} \Longrightarrow \Gamma_{g}(h) & =\sum_{i} g\left(\widehat{h}^{i}\right) h^{i}=\sum_{i}(\mathrm{id} \otimes g)\left(h^{i} \otimes \widehat{h}^{i}\right) \\
& =(\mathrm{id} \otimes g)\left(\sum_{i} h^{i} \otimes \widehat{h}^{i}\right)=(\mathrm{id} \otimes g) \Delta h
\end{aligned}
$$

Thus, we have shown that

$$
\Gamma_{g}=(\mathrm{id} \otimes g) \circ \Delta
$$

In summary, we have a map $\Gamma: H^{*} \rightarrow \mathcal{L}(H)$.
Remark 1.2. The map $g \mapsto \Gamma_{g}$ does not act nicely with respect to the product structure on H^{*}.
7. Define $G_{0}=\left\{g \in H^{*}: g\left(h_{1} \cdot m h_{2}\right)=g\left(h_{1}\right) g\left(h_{2}\right)\right.$. We claim that G_{0} is a group and $\Gamma_{g_{1} \cdot \Delta * g_{2}}=\Gamma_{g_{1}} \circ \Gamma_{g_{2}}$ for $g_{1}, g_{2} \in G_{0}$ (so $G=\left\{\Gamma_{g} L g \in G_{0}\right\}$ is a group). In the interest of time, we will not show this now.

Definition 1.3.

8. We say that our bialgebra \mathcal{H} is graded if $\mathcal{H}=\oplus_{n \geq 0} \mathcal{H}_{n}$ with $m: \mathcal{H}_{n} \otimes \mathcal{H}_{m} \rightarrow \mathcal{H}_{n+m}$ and $\Delta: \mathcal{H}_{n} \rightarrow \oplus_{i+j=n} \mathcal{H}_{i} \otimes \mathcal{H}_{j}$ and connected if $\mathcal{H}_{0}=\operatorname{span}\{\mathbf{1}\}$.

Theorem 1.1. For a graded and connected bialgebra, an antipode S exists is unique, and $S: \mathcal{H}_{n} \rightarrow \mathcal{H}_{n}$. In fact,

$$
S=\sum_{k \geq 0}\left(\mathbf{1} \circ \mathbf{1}^{\prime}-\mathrm{id}\right)^{\cdot{ }^{m} k}
$$

